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INVESTIGATION OF THE INFLUENCE OF STIFFENER
SIZE ON THE BUCKLING PRESSURES
OF CIRCULAR CYLINDRICAL SHELLS
UNDER HYDROSTATIC PRESSURE,
PART Il

by

James A. Nott

This report is reprinted from the Journal of Shin Research, Volume 6,
Number 2, October 1962, published by The Society of Naval Architects and
Marine Fngineers. The original work was published as a thesis investiga-
tion under the supervision of Professor R.A. Hechtman at the George
Washington University, and then as a formal David Taylor Model Basin
report (Report 1600) to provide for a wider distribution.

The present report summarizes the detailed theoretical and experi-
mental analyses presented in the two previous manuscripts, and also,
discusses the comparison between the theoretical analysis of this report
and a later analysis developed by Doctor G. Gerard.
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Investigation on the Influence of Stiffener Size on the
Buckling Pressures of Circular Cylindrical Shells Under
Hydrostatic Pressure’

By James A. No#t*

FS
*

Y.

A theoretical derivation is given for elastic and plastic buckling of stiffened, circular
cylindrical shells under uniform external hydrostatic pressures. The theory accounts for
variable shell stresses, os influenced by the circular stiffeners, and critical buckling pres-
sures are obtained for simple support conditions at the shell-frame junctures. Collapse
pressures for both elastic and plastic buckling are determined by iteration and numerical
minimization. The theory is applicable to shells made either of strain-hardening or
elastic-perfectly plastic materials. Using the developed analysis, it is shown that a varia-
tion in stiffener size can change the buckling pressures. Test data from high-strength
steel and aluminum cylinders show agreement between the theoretical and experimental

collapse pressures to within approximately six percent.

Since the USS Holland was launched, the Navy has
been interested in the design of reinforced cylinders for
submarine structures. Collapse pressures for various
modes of failure must be determined before the naval
architect can arrive at a rational design. The collapse of
a cylindrical shell stiffened by circular frames may occur
in one of three modes depending upon its geometry.
Considering a given shell-thickness to shell-diameter
ratio, failure may occur by

1 This paper is based on a thesis investigation submitted to the
George Washington University in partial satisfaction for the de-
gree of Master of Science in Engineering.

$ Structural Research Engineer, David Taylor Model Basin,
Washington, DD. C.

effective area of fraine croes section, sq in.

coefficients for plastic-buckling equation, in. ~*

faying width of frame, in.

hendin, rigidity of shell, EA3/12(1 — »*), lb-in,

Young's modulus, psi

secant modulus, ps

tangent modulus, pei

shell thickness, in.

mode shape coefficient, n/RK, in. !

center-to-center spacing of fr-mu, in.

unsupported length of cylinder, Ly — b, in.

moduli parameter, 1 — E,/E,, dimensionless

numbers of half-waves of buckling configuration
in axial and circumferential directions, respec-
tively, dimensionless

forces per unit length, Ib per in,
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pressure, psi

elastic burkling pressure, pei

plastic buckling preasure, equation (10), psi

plastic collapse pressure, equations (10) and (13),
psi
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Nomenclature

1 General instability.

2 Asymmetric shell buckling.

3  Or axisymmetric shell collapse.

General instability occurs when the size of the frames is
critical for a given frame spacing, resulting in collapse of
the frames together with the shell. Failure may occur
along several frames or it may occur over the entire
length of a compartment. Shell buckling occurs when
frame size is sufficient to prevent general instability, but
the frame spacing is critical. In this type of shell failure
a series of asymmetric lobes forms in the ghell between
frames. Axisymmetric shell collapse occurs when the
frame size is sufficient to prevent general instability and

= radius of eylinder to midplane of shell, in.
= radius of eylinder, to CG of frame, in.
= ghell displacementas, in.
z, ¥, ¢ = coordinates, dimensionless
= effective stress parameter, 3(1 — E/E.)/ e

measure of beam-column effect, (R/A)%p/2E
e (1 = »)9dimensionless (R/AYp
- A/R | gimenaionleas

property parameter, 7

¥
shell flexibility parameter (3(1 — »®)]'/¢L /(R W3,
dimensionless
mode shape coefficient, me /L, in. !
Poisson's ratio, dimension|
elastic value of Poisson’s ratio, dimensionless

¢« @ ™
[ ]

e:, ¢, = membrane stresses, psi
o, = effective stress, psi
¢, = elastic limit stress, psi
oy = yield stregs, pai
¢ = stress function, dimensionless

shear stress, psi



the frame spacing-dinmeter ratio is relutively small, pre-
venting shell buckling.  Failure occurs hy a combination
of yielding and axisymmetric buckling of the shell, result-
ing in an axisymmetric fold in the shell between frames.

Theoretical solutions for the elustic instability of
eylindrical shells have been derived by Mises (L] and
Sanden and Tilke (2], and their solutions apply when
stresses in the shell are linear when buckling occurs.
The problem of plustic collapse has been recently treated
by Reynolds (3] for the asymmetric mode of failure and
by Lunchick [4, 3] for the axisymmetric mode. In their
solutions the nonlinear effect of the stress-strain curve in
the elastic-plustic region is considered.

A subject of current interest to the naval architect is
that of the effect of the size of the reinforcing circular
frames on the asymmetric shell-buckling strength of
cylindrical shells under external hydrostatic pressure.
This problem becomes important in the design of sub-
marines, since it is advantageous to have the strultural
material in the shell and frame so distributed that it
gives a maximum collapse pressure for a minimum weight.

In this report a theoretical analysis of the asymmetric
shell-buckling mode of a circular, framed, cylindrical shell
loaded under external uniform hydrostatic pressure is
shown. Gerard's [6] equations of equilibrium for plastic
buckling are solved using realistic expressions for stresses
in the shell determined by the Salerno-Pulos (7] theory,
which accounts for the effect of circular frames. The
plasticity coefficients in Gerard's equations of equi-
librium are expressed in terms of variable shell stresses
determined by Salerno and Pulos. The feature of vari-
able shell stresecs becomes important in this problem, as
a change in frame size will produce a change in shell
stresses.

Theery
Plastic-Buckling Theory

In the case of stiffened circular cylindrical shells loaded
under external hydrostatic pressure the two principal
stresses occur in directions parallel and perpendicular to
the longitudinal axis of the cylinder, Fig. 1. Therefore,
the shear stress is given by

_N.
h

Using membrane-stress theory, which considers only
stresses on the middle surface of the shell (neglecting
bending), the longitudinal membrane stress can be de-
termined from the equation of equilibrium in the longi-
tudinal direction:

=0 ¢))

4

N _R
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The circumferential membrane stress can be obtained

by the analysis of Salerno and Pulos (7] who expresa the
stress as follows:

(2

3 Numbers in brackets designate References at end of paper.
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Fig. 1 Coordinate system for stiffened cylindrical shell
- oPR :
9, =¢ 3 (3)
where
¢ = ¢o(p)

In the theory of buckling, a certain stress condition at
a point in the shell is assumed to reach a limiting value
at the onset of collapse. The circumferential stress
varies with r and the stress condition is assumed to be
most critical at midbay; therefore, the stress is taken at
the midbay, midplane fiber location. The function, ¢,
which determines the axisymmetrie stress at this location
of a circular framed cylindrical shell loaded under ex-
ternal hydrostatic pressure is given by the theory of
Salerno and Pulos (7] and expressed by Krenzke and
Short (8] in the following convenient form:

(l - I') a|Fg
2

- €]
a+ 8+ Fi(l - 8)

where a, is the ratio of frame area to shell area and is ex-
pressed as

¢=1

(4a)*

and 8 is the ratio of faying width of the stiffener to the
center-to-center spacing of the stiffeners and is expressed
as

b

8= L; ('“’)

4y is the effective area of the frame obtained by multiplying
the true area of the frame by R/Rpy for internally framed cylinders
and (R/kr) for externally framed cylinders.



The functions F, and F; are defined as follows:

{4 cosh? mf — cos*md
h (9) [“OSh 8 sinh n,0 + 9‘15,"’0_31!‘_9_’0] ta

m ™
cosh 8 8in nyd + sinh 1,0 cos né

Fy= 7 M
cosh ) sinh n.0 4 o8 sin nd
m ™"

where
nm= i(] — ,Yl)l/v and n, = *(l + TI)I/’

Gerard’s [6] equilibrium equations for cylindrical-shell
structures made of an isotropic, incompressible material
and subjected to external hydrostatic pressure can be
written in terms of the shell stresses, ¢, and «,, a8 follows:

2\ O%u . 1% 3 o:a,\ O
1= a2y 2H¥, "9 D _ g Tt0y O
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1 0:0,\ 1
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where

a = _:.‘. (l - Q‘)
of El

in which the effective stress, ¢, is determined from the
octahedral shear-stress theory of Hencky, Huber, and
Mises; i.e.,

7 = (o0 + 0, — 030,)'""

(6)

If simple support conditions are assumed at the shell-
frame junctures, the boundary conditions which must be
satisfied are

Wao = Wiar =0 @
and
dw| oW
ozt | .0 O1?
Simple support implies that the frames offer no restraint

=0 (8)

z= 1L

to longitudinal bending in the shell at the shell-frame
junctures. This assumption at the boundary may be
justified by concluding that, when plastic behavior begins
in the shell at the shell-frame junctures, the frames pro-
duce little restraint against rotation of the shell. The
general solution of equations [5) satisfying the boundary
conditions, equations (7) and (8), can be expressed as

Ag sin ks cos \x
By cos ks sin \x
Cyein ks sin \x

u
v
w

©

In small-displacement theory, the criterion for bifurca-
tion of equilibrium is that the deflections increas= beyond
limit. To satisfy this stability criterion, the expressions
for the displacements, u, v, and w, given by equations (9),
are substituted into the equilibrium equations, equations
(5), and the determinant formed by the coefficients of
the arbitrary mode-shape parameters, Ao, Bo, and Co, is
set equal to zero. Equating this determinant to zero, a
characteristic equation for the determiration of the
plastic-buckling pressure is obtained. The method of
solution is shown in detail by Nott in [9]. The plastic
buckling pressure is expressed in the form

D[AL = (CM)r + (CM)is) + E%‘j-'
Pr= (10)
R (- + w\){(m FAN = A
2
Al 2
[ie (2 - w) + ov ]
where
C=o 3 (10a)
106 —26 + 1)
E,
=1y (10b)
1 = Ay — A + A?
(10¢)
1= A+ A + A9 — A + Aw!
and
o = AN
As = NG 4+ A2k 4 N
As = kMK + A2
A, = KK 4 AR 4+ 2N (10d)
A = JSEkT 4+ AY)
Ao = DY ~ NY)
A7 = 2KN2KT — AN — 2NY)
Ae = BEA K — )
Ay = HS(E + 40\

Equation (10) is an exact solution for the case of simple
support conditions at the shell-frame junctures. Gerard,
in [10], obtains an approximate plasticity reduction fac-
tor for asymmetric buckling. In his solution, Gerard
makes the assumption that




nL\?
(28 >

This assumption for “moderate length cylinders” leads
to neglecting of higher order terms which enables an
analytical minimization of the plasticity equations.
However, in the general case of cylinders of any length
no assumption can be made as to the order of magnitude
of nL/xR. Hence, the expression for the critical pressure
becomes more complicated, and the minimisation with
respect to the number of lobes (n) is not as convenient as
in Gerard's case.

The plastic-buckling pressure, p,, in equation (10)
defines a range of collapse pressures for different values
of o, beyond the elastic limit. The flexural rigidity of the
shell, D, in equation (10) is given by

- LN
b 12(1 — ») an
where Poisson’s ratio, », in the elastic-plastic region is
shown by Gerard and Wildhor (11] to be

,,1_{9_-(_1_,)‘
2 E\2

Equation (6) can also be used to determine the relation-
ship between the prebuckling stress condition in the shell
and the applied pressure. Substituting equations (2) and
(3) into equation (6) and solving for p, one obtains

2h0 I

e — 26+ " (9)
Since ¢ is a function of the applied pressure, equations
(10) and (13) represent transcendental equations for the
pressures p, and p,, respectively.

Buckling of 8 cylindrical shell in the asymmetric mode
is assumed to occur when the applied pressure, p,, equals
the plastic-buckling pressure, p,. Therefore, the plastic-
collapee pressure, p., which uniquely defines the plastic-
buckling pressure of the shell, is obtained by-the simul-
taneous solution of equations (10) and (13). As an
analytical solution to these equations would be quite
tedious, if not impossible, a graphical solution is recom-
mended. Equation (10) can be plotted in the form p,
versus o, and equation (13) in the form p, versus ¢.
The intersection of these two curves then defines the
collapee pressure, p..

Minimum or critical values of p, in the elastic-plastic
region for a specific geometry are determined by: (a)
Numerical minimization with respect to n, and (b) an
iteration procedure to satisfy equations (4) and (10).
Iteration is also used to determine p, from equations (4)
and (13). This procedure, outlined for a strain-harden-
ing material, is greatly simplified for an elastic-perfectly
plastic material. As the value of o, for an elastic-
perfectly plastic material is never greacer than o,, equa-
tion (10) represents the vertical line ¢, = o,.

Elastic-Buckling Theory

When the geometry of the shell structure is such that
elastic buckling can occur, the intersection of p, versus

(12)
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Fig. 2 Effect of frame sizse on shell-buckling pressures of
soel cylinders ¢

o, and p, versus o, occurs for a value of o, less than o,,
the elastic limit of the material, In this case E,/'E, = 1|
and equation (10) reduces to Reynolds (3] elastic-
buckling pressure, p,, which can be written as
Akt + A3)? A
p, = Ehl 1201 — »Y) ~ Rk + A)?

i R x’ -
2—+l-’¢

(14

A plot of p, versus o, is the horizontal line p = p, in the
p — o, plane and, therefore, the critical buckling pres-
sure may be obtained directly from equation (14).
Equation (14) is also a transcendental oquation in the
pressure, and the elastic-collapse pressure, p,, must he
determined by iteration.
Theoreticol Results

Calculations have been carried out for a series of
geometries in the plastic-buckling range to show the
effect of frame sise on the shell-buckling pressure, p.,
according to the developed theory. A strain-hardening
steel with a yield strength of 88,000 pai is used for
demonstrtion purposes, and the results are presented in
graphical form in Fig. 2. As shown in the graph, the
flexibility parameter, ¢, has a limiting value of 4.0, for
which an increase of the relative frame sise will not pro-
duce any increase in collapse pressure. Thus, at this
limit the ratio of frame area to shell area need only be
sufficient to prevent combined frame and shell failure.
Since 0 is & function of A and R and is directly propor-
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Pig. A Aluminum models after collapse

tional to the spacing, L, it is seen that for a constant A
and R, 0 is totally dependent on L. For this case, frame
spacing is an important aspect on the effect of frame sise.

Experiment

Description of Models

To determine experimentally what effect the circular
frames have on a cylindrical shell loaded under external
hydrostatic pressure, four stnictural models were fabri-
cated and tested in a preseure tank. As pioneering struc-
tural research is currently being conducted in the use of
aluminum for oceanographic research vehicles, for ex-
ample, the Alumsnaut, a high-strength aluminum alloy
was chosen. The four models were constructed of
7075-T6 extruded aluminum. Machined structural
models were favored as opposed to welded models to
eliminate the effects of initial deflections and residual
stresses which occur in welded structures. Lunchick and
Short [12] and Krenske [13] have shown that, in welded
models, the heating and cooling process occurring when

<

the webs of the frames are welded to the shell causes an
initial outward shell deflection for an externally-framed
cylinder. On the other hand, an initial inward shell de-
flection occurs for an internally-framed cylinder. These
initial deflections cause residual stresses and beam-
column effects which can affect the collapse strength.

Each model had the same shell thickness, radius, and
typical bay lengths, and only the cross-sectional area of
the frames varied. The shell flexibility parameter, 8, was
2.5 for each model.

Model 1 had a frame area equal to 30 percent of the
shell area. The frame area of Model 2 was 40 percent of
that in the shell. Model 3 had a frame area 70 percent of
the shell, and Model 4, 100 percent of the shell area.
The shape of the frames on all four models was that of a
T-section, and the faying width of the webs was held
constant in order to hold the bay lengths the same.

Test Resvits

Fig. 3 shows the four models after collapse. Model 1,
which had a cross-sectional frame area 30 percent of the
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Fig. 4 Effect of frame size on collapse pres.
sures of aluminum cylinders

shell area, collapeed at a pressure of 1300 psi by plustic
general instability. Thae {rames were not of sufficient sizc
to prevent frame failure, and both frames and shell failed
simultaneously over the entire length of the model in 2
single “‘deep dish”” lobe. Width of the lobe was approxi-
mately one eighth of the circumference of the model.
Tearing of the shell from the end rings and frames oc-
curred throughout the lobe, and the two center frames
buckled inward.

Model 2, which had a cross-sectional frame area 40
percent of the shell area, collapsed at 1400 psi hy plastic
asymmetric buckling. Failure occurred in all three
typical bays in a series of nonsymmetrical lobes ac-
companied by lateral twisting of the frames. The
length of the lobes was approximately one tenth of the
circumference of the model. In several places tearing
occurred at the shell-frame junctures, but this was not
as pronounced as in Model 1.

Model 3, which had a cross-sectional frame area 70
percent of the shell area, collapsed at 1420 pei by axisym-
metric shell yielding. Failure occurred in the first
typical bay from the end ring along a 180-deg arc length
around the circumference. Tearing occurred at the two
shell-frame junctures and at midbay.

Model 4, which had a cross-sectional frame area 100
percent of the shell area, collapsed at 1390 psi by axisym-
metric shell yielding similar to Model 3; however, the
area of collapse was more pronounced in Model 4. The
length of the failure in this model extended over ap-
proximately 200 deg. Failure occurred in the first typical
bay from the end ring and tearing of the shell at the hinge
locations occurred as in Model 3.
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Fig. 5 Effect of frame size on axisymmetric
strains of aluminum cylinders

.\ graphical representation of the observed collupse
pressures is shown in Fig. 4, together with various cor-
responding theoretical formulas. The Hencky-Mises
{14 yield criterion at outside midbay assumes that
fuilure occurs when the effective stress, o,, on an outside
fiber at midbay reaches the yield strength of the ma-
terinl. An extension of this theory is that of Kempner
and Salerno {13], in which failure is assumed to occur
when the stresses inside at the frame, followed by stresses
at outside midbay, reach the yield strength. Lunchick's
plastic-hinge theory (4] for axisymmetric collapse is for
an elastic-perfectly plastic material and allows for an
amount of plastic reserve strength before failure occurs.

Discussion of Experimentol Results

The experimental results showed that an appreciable
increase in collapse pressure occurred from the 30 percent
frame-area case to the 40 percent frame-area case. At
the 30 percent frame arco a general instability failure
occurred. At the 40 percent frame area buckling of the
shell occurred between frames. Only a small increase in
collapse pressure occurred between 40 percent and 70
percent frame size. At 70 percent frame size an axisym-
metric yield-type failure occurred instead of asymmetric
buckling. Strains at the frame indicated that longitudi-
nal stresses grow with an increase of percent frame size,
Fig. 3, which could cause premature yielding. A subse-
quent increase to 100 percent frame size caused collapse
at a lower pressurc than that of the 40 percent frame
size. For an increase in percent frame size, the relative
decrease in circumferential strains at a frame was greater
than the decrease in circumferential strains at midbay.
This shows that large frames lower frame deflections, but
increase bending of the shell at the frames, thus causing
relatively higher longitudinal stresses in the shell at the
frame locations. Therefore, in the case of the 100 per-



Table | Comparison of Theoretical Versus Experimental Collapse Pressures

Mode! Number T2 | 7.3 |16 |T2A|T-2A 002|022 2
Frame Asea/Sheli Atea 0.952] 0.694|0.609]|0.418]0.200 | 0.408 |0.57¢ | 0.400
-’/Exlo’ 293 [3.60 3.3 [3.03 |2.00 [2.27 (2.35 | 6.09
ARx 102 0.679|0.669 10.953 |0.653 10.979 |1.093 10.073 | 1.528
Shape of Frame Tee Rectanguisr | Too
Material T-Siee! Mild Steel 75-T6
Construction Welded Hachined
Expetimental Collopse Pressure (psi) €70 | 553 11005 (600 | 7701 975 | 735 | 1400
Eouations (10) snd {10, p, | 662 [ S48 | 900 | 691 | 243 | 917 | 707 | 1485
Plastic Buckling
Reynelds® 696 | 563 1016 | 705 | 748 | 938 | 734 | 1502
Emﬁu[l‘l.p. 878 | 603 [1210 | 755 | 970 [ 1895 | 988 | 1943
loynl“’ 906 | 626 | 1259 | 756 | 1010 [ 1907 | 1002 | 1976
Elastic Buckling
Sanden-Toike? 930 | 631 | 1258 | 773 | 1032 | 2014 {1054 | 1977
Mises' 706 | 585 1100 [ 705 | 995 | 1706 | 963 | 1015

cent frame size, the bending stresses in the shell at the
frames could have affected the collapse pressure ad-
versely.

Comperisen of Theery With Experiment

For the models tested, the asymmetric theory predicts
an increase in shell-buckling pressure for an increase in
frame size. Since only Model 2 failed in this mode, it is
difficult to make a positive conclusion concerning the
actual trend. However, it would seem reasonable to
assume, from the much lower collapse pressure of Maodel 1
and the higher pressure of Model 3, that the experimental
buckling pressures also increase with an increase of frame
size to a point where axisymmetric collapse occurs. This
increase in buckling pressure for an increase of frame size
agrees with equations (10) and (13) as shown in Fig. 4.
Using equations (10) and (13) and Lunchick's plastic-
hinge theory (4] for axisymmetric collapse, the transition
between asymmetric and axisymmetric collapse occurs
for a frame area 62 percent of the shell area, which case
is between Models 2 and 3.

The solution®of equations (10) and (13) of this report,
Reynolds’ theory [3), and Lunchick’s plastic-hinge
theory (4] all predict collapse pressures on the uncon-
servative side of the experimental values. Reynolds
does not completely account for actual prebuckling
stresses in the shell as influenced by the frames, and the
plastic-hinge theory is not strictly applicable to a strain-
hardening material.

When the Hencky-Mises yield criterion [14] is applied
to the stresses at the outside midbay location, theoretical
collapse pressures are on the conservative side of the

experimental values. The theory of Kempuer and Sa-
lerno [15] shows collapse pressures slighty lower than
those given by the Hencky-Mises criterion.

Reynolds [3], in his comprehensive study of plastic
buckling, also reported the test results of seven steel
models, five of welded construction and two machined.
Results of these tests and results of Model 2 are com-
pared with theoretical formulae in Table 1. Iig. 6 gives
u graphical representation of theoretical versus experi-
mental collapse pressures for the steel cylinders shown in
Table 1. Equations (10) and (13) and Reynolds’ plastic
equations are shown to agree within approximately 6
percent of experiments. The elastic equations, equa-
tion (14), and those of Mises {1], Sanden and Tolke (2],
and Reynolds (3], predict collapse pressures which are
unconservative when compared with the experimental
results. This can be cxpected, since all the test models
collapsed plastically.

A property parameter, defined

;= h/R
o,/E

is shown superimposed on the graphs in Iig. 6. When
h/R is relatively high and ¢,/E is relatively small, a high
value of ¢ is obtained. This is the case for Model U-12,
in which A/R is 0.0193 and o,,'E is 2.27 X 10~ for 0.488
frame-area to shell-area ratio, Table 1. Also, for small
values of A/R and large o,/E a low { is obtained, as is the
case for Models T-2A and T-3. The trend of the {-curve
in Fig. 6 agrees with the trend of the elastic-buckling
equations. This should be expected, since for Model
U-12 the large h’R increases the theoretical elastic-

(15)
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Fig. 6 Graphical comparison of theoretical
versus experimental collapse pressures for
steel cylinders

buckling pressure, and the small o,/E lowers the ex-
perimental collapse pressure. Thus, for this case, a high
ratio of theoretical collapse to experimental collapee is
obtained. Conversely, for Models T-2A and T-3 the
small A/R and large o,/E produce more conservative
values for the ratio of theoretical collapse to experimental
coliapee.

Conclusions

The following conclusions can be made for stiffened
cylindrical shells lodded under external hydrostatic pres-
sure:

1 The theory presented by the author for asymmetric
buckling adequately predicts collapse pressures for shell
geometries constructed from (a) high-strength steel, and
() high-strength aluminum, when the observed collapse
i8 in the asymmetric mode.

2 A decrease in the shell flexibility parameter, 9,
leads to:

(a) An increase in the plastic asymmetric buckling
pressures,.p,, for a specified percent frame size.

(b) A higher rate of increase in the plastic buckling
pressures for an increase in percent frame size.

3 For a cylinder made of 7075-T6 aluminum and
having a shell flexibility parameter of 2.5, an increase in
relative frame size leads to:

(a) A change in the observed mode of failure between
30 percent and 40 percent frame size from plastic general
instability to plastic asymmetric buckling.

(b) A change in the ohserved mode of failure between
40 percent and 70 percent frame size from plastic
buckling to an axisymmetric yield-type collapse.

(¢) A change in the predicted mode of failure from
asymmetric buckling to axisymmetric yielding at 62 per-
cent frame sizc; Lunchick's [4] plastic hinge and equa-
tions (10) and (13), p..

(d) An increase in the theoretical asymmetric buckling
pressures between 30 and 70 percent frame size.

(¢) An increase in the experimental and theoretical
longitudinal bending strains at the frame locations.

(f) A decrease in the experimental nd theoretical
circumfercntial strains at the midbay and irame locations.
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